Exercise 9

Find the particular solution for each of the following initial value problems:

$$
(\tan x) u^{\prime}+\left(\sec ^{2} x\right) u=2 e^{2 x}, \quad u\left(\frac{\pi}{4}\right)=e^{\frac{\pi}{2}}
$$

Solution

Observe that the left side can be written as $[(\tan x) u]^{\prime}$ by the product rule.

$$
\frac{d}{d x}[(\tan x) u]=2 e^{2 x}
$$

Now integrate both sides with respect to x.

$$
(\tan x) u=e^{2 x}+C
$$

The general solution is thus

$$
u(x)=\frac{e^{2 x}+C}{\tan x}
$$

Because an initial condition is given, this constant of integration can be determined.

$$
u\left(\frac{\pi}{4}\right)=\frac{e^{2 \frac{\pi}{4}}+C}{\tan \frac{\pi}{4}}=\frac{e^{\frac{\pi}{2}}+C}{1}=e^{\frac{\pi}{2}} \quad \rightarrow \quad C=0
$$

Therefore,

$$
u(x)=\frac{e^{2 x}}{\tan x}
$$

